Методы фармацевтического анализа

Расстройства здоровья

Физические основы лучевой терапии (ЛТ)

Рис.1. Протоны с энергией 160-180 МэВ

Наличие пика Брегга и возможность управления его локализацией на глубине создают благоприятные условия для лучевой терапии протонными пучками высоких энергий. В настоящее время существуют различные устройства, с помощью которых из плазменного шнура, горящего в водородной атмосфере, извлекаются свободные от электронов ядра водорода - протоны. Они ускоряются в циклических ускорителях, приобретая требуемую энергию.

Основными преимуществами использования протонных пучков в лучевой терапии являются формирование не расходящихся пучков и возможность подведения необходимого количества энергии на заданную глубину, соответствующую пику Брегга. При этом ткани, расположенные за пределами пучка, практически не повреждаются. Участок пика Брегга для протонов невелик, но можно использовать пучок с различными энергиями и таким образом разрушить весь очаг поражения.

Отрицательно заряженные частицы.

b-излучениепредставляет собой поток электронов и позитронов, возникающий в результате внутриядерных превращений нейтронов и протонов.

В отличие от a-частиц b-частицы характеризуются непрерывным энергетическим спектром. Путь электрона в веществе извилист, поскольку он обладает малой массой и легко изменяет направление вследствие соударения с электронами атомов. Поэтому начальный пучок электронов в тканях имеет тенденцию к расхождению (рассеяние электронов). При торможении быстрых электронов в поле ядра атомов возникает тормозное фотонное излучение.

Вследствие большой скорости проникающая способность b-частиц выше, чем у a-частиц. В воздухе она составляет около 10 м, в мышечных тканях - 10 мм. b-активные препараты используются при лечении злокачественных опухолей, локализация которых позволяет обеспечить непосредственный контакт с этими препаратами. Реже они используются с целью диагностики.

С помощью современных ускорителей создаются электронные пучки высоких энергий (

до 15-50 МэВ), обладающие большой проникающей способностью. Средняя длина свободного пробега таких электронов может достигать в тканях человеческого организма 10-20 см. Электронный пучок, поглощаясь в тканях, создает дозное поле, отличающее этот вид излучения от других. Максимум ионизации при этом образуется вблизи поверхности тела. Размеры зоны максимума ионизации находятся в прямой зависимости от величины энергии излучения. За пределами максимума происходит довольно быстрый спад дозы.

Электронный пучок с энергией до 5 МэВ используется при лечении поверхностных злокачественных новообразований, с энергией от 20 до 50 МэВ - более глубоко расположенных. Современные ускорители дают возможность плавно регулировать энергию пучка электронов и тем самым создавать требуемую дозу на любой глубине.

p-мезоны- бесспиновые элементарные частицы с массой, величина которой занимает промежуточное место между массами электрона и протона.

Отрицательные p-мезоны при "входе" в вещество в начале пути ведут себя подобно протонам, затем основная часть мезонов останавливается на определенной глубине и со 100% -й вероятностью захватывается атомами (кислородом и азотом тканей), а затем поглощается их ядрами. При этом в ядро вносится очень большая энергия (больше 100 МэВ), в результате чего ядро сильно возбуждается и распадается с испусканием нейтронов, протонов, дейтронов и a-частиц, которые и вызывают сильную ионизацию вещества.

Таким образом, все заряженные частицы в результате их электростатического взаимодействия с электронами облучаемого вещества приводят к непосредственной прямой ионизации его атомов и молекул.

Это взаимодействие тем эффективнее, чем выше порядковый номер вещества-поглотителя. Поэтому защитные устройства, экранирующие взаимодействие ИИ на биологические объекты, выполняются из веществ с высоким атомным номером.

Нейтронные излучения

Процессы взаимодействия нейтронов с веществом определяются как энергией нейтронов, так и атомным составом поглощающей среды. Отсутствие у нейтронов электрического заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к ядру.

Источники нейтронов:

ü бомбардировка дейтерия;

ü смеси a-излучателей с бериллием или бором:

Не + Ве = 13С ® 12С + n.

При воздействии на ткани нейтроны захватываются ядрами атомов, что приводит к нарушению их структуры и сопровождается испусканием a - или b-частиц и g-квантов. Кроме того, при ядерных превращениях освобождаются ядра отдачи, которые обладают большой энергией, производят высокую ионизацию среды. Их ионизирующая способность близка к ионизирующей способности a-частиц. Однако поражающее действие нейтронов значительно выше вследствие их большой проникающей способности. При облучении нейтронами в клетке возникает одномоментный разрыв ДНК, что приводит к ее гибели. Так как гибнут не только опухолевые, но и здоровые клетки, для нейтронов характерен высокий процент лучевых повреждений. Из всех видов ИИ быстрые нейтроны обладают наибольшей радиационной опасностью. Быстрые нейтроны лучше замедляются на ядрах легких элементов (вода, парафин, жировая ткань). Следовательно, поглощенная доза оказывается большей в жировой ткани, что приводит к лучевым повреждениям. Перейти на страницу: 1 2 3 4