Методы фармацевтического анализа

Расстройства здоровья

Обработка соматосенсорных и слуховых сигналов

Сенсорные системы, соматосенсорная и слуховая, генерируют сигналы и анализируют соматическую и звуковую информацию. Обе системы зависят, в первую очередь, от сенсорных рецепторов, которые реагируют на механические стимулы, возникающие в результате непосредственной деформации от осязания, или движения конечностей, или смещений, вызванных звуковыми волнами. Центральная нервная система снабжается информацией о месте прикосновения на поверхности тела благодаря сигналам, возникающим от механорецепторных нейронов со специфическими модальностями на коже и в подкожных тканях. Рецептивное поле соматосенсорного нейрона в ЦНС определяется как область периферии, в которой адекватный стимул приводит к изменению активности этого нейрона. Рецептивное поле может быть очень мало, как на кончиках пальцев, или обширно, как в средних участках спины. Концепция рецептивного поля для слуховых сенсорных нейронов более абстрактна. Первичные сенсорные афференты кодируют частотный состав звука с чрезвычайной чувствительностью и избирательностью, но не определяют его пространственной локализации. Скорее, карта звукового пространства выводится центральными нейронами из анализа временного хода и интенсивности входных сигналов, поступающих через оба уха.

Эти различия между двумя системами влияют на организацию проводящих путей и обработку сигналов в ЦНС. Соматосенсорная информация передается от периферических афферентов через нейроны второго порядка в ядрах задних столбов спинного мозга на нейроны вентробазального комплекса таламуса без существенных изменений. Таким образом, нейроны в первичной соматосенсорной коре, принимающие входные сигналы таламуса, имеют такие характеристики ответов, которые тесно связаны с характеристиками сенсорных клеток, напрямую иннервирующих кожу или суставы. Соматосенсорная кора соматотопически картирована. Клетки первичной соматосенсорной коры, объединенные в составе вертикальной колонки, имеют близкую локализацию рецептивных полей и сходный набор модальностей стимула. Вторичные (и ассоциативные) соматосенсорные области также соматотопически картированы, однако они содержат нейроны с более сложными характеристиками стимула, чем характеристики клеток первичной соматосенсорной коры, что предполагает иерархический способ извлечения признаков. «Значение» стимула в соматосенсорной системе зависит, в основном, от его положения на поверхности тела.

Значение звука определяется анализом его спектральных (частотных) и временных характеристик. Частотная избирательность слуховых волосковых клеток определяется их механической и электрической настройкой. Эпителий волосковых клеток организован тонотопически. Афферентные волокна избирательно иннервируют волосковые клетки, и, таким образом, характеризуются своей оптимальной частотой звука, на которую они реагируют лучше всего. Эфферентная отрицательная обратная связь на волосковых клетках улитки уменьшает их чувствительность и частотную избирательность. Афферентные волокна улитки образуют синаптические контакты в ядрах ствола мозга. Нейроны второго порядка проецируются в комплекс верхних олив или идут в составе путей, восходящих через нижние бугры четверохолмия в таламические ядра медиального коленчатого тела. Нейроны в первичной слуховой коре получают вход от обоих ушей и кодируют свойства звука более сложные, чем те, которые были распознаны на периферии. Локализация звука определяется нейронной переработкой, включающей сравнение входов от обоих ушей. Соответственно, центральный слуховой путь включает в себя сложный набор синаптических переключений и обратных связей, в которых происходит бинауральное сравнение, либо определение других аспектов временной организации и частотного состава стимула.

Наше знание о мире зависит от преобразования энергии окружающей среды в нейрональные сигналы. Как определяется значение электрических сигналов? Четыре принципа организации являются важными для сенсорной обработки. Первый из Перейти на страницу: 1 2